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The Order of Numerical Methods for Ordinary 
Differential Equations 

By J. C. Butcher 

Abstract. For a general class of methods, which includes linear multistep and Runge- 
Kutta methods as special cases, a concept of order relative to a given starting procedure is 
defined and an order of convergence theorem is proved. The definition is given an algebraic 
interpretation and illustrated by the derivation of a particular fourth-order method. 

1. Introduction. Detailed theories have been published for the study of error 
propagation in linear multistep methods on the one hand ([1], [2], [3]) and for Runge- 
Kutta methods on the other hand ([2], [4]). While it is possible to modify these theories 
to include various methods which fall between these extreme types ([5], [6], [7], [8], [9]), 
it is of interest to analyse the behaviour of error propagation for a class of method 
of sufficient generality to include all these special cases in a natural and straight- 
forward way. In fact, we will consider the type of general method formulated by 
the author [10]. 

In attempting to find a suitable meaning for the concept of "order" which general- 
izes the standard definitions in the well-known special cases, a rather surprising fact 
arises. This is that the definition of order which seems most natural for this general 
type of method does not necessarily, in the standard cases, assign a value to the order 
which coincides with that given by traditional definitions. In fact, this new concept 
coincides in the case of Runge-Kutta methods with "effective order" [11] so that, 
for example, there exist methods of order 5 in the sense of this paper but only 4 in 
the usual sense. 

In the present paper, some of the ideas and methods introduced in [12] will be 
made use of to show how the analytic definition of order may be expressed in algebraic 
terms. To illustrate these developments an example is given of a method whose 
derivation is based on this new meaning of order. 

2. Notation. Let V be an N-dimensional real vector space and let A, B be the 
matrices of two linear operators V -* V with components aii bij respectively (i, j = 
1, ..., N). As in [10], we consider methods (A, B) characterized by such a pair of 
matrices. 

Let X be a finite-dimensional normed real vector space and let f: X -t X satisfy a 
Lipschitz condition with constant L. We shall consider the differential equation 
y'(x) = f(y(x)). In computing solutions using (A, B), we have, at the end of step number 
n, a collection of N approximations y(n), yIln), ... , y'n which are computed from 
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794 J. C. BUTCHER 

corresponding approximations to the solution after n - 1 steps. We write h as the 
stepsize. That is, we regard yin) (i = 1, 2, , N) as approximations at points h 
further ahead than the approximations yin-l) (i - 1, 2, , N). The formula for the 
computation of yen) (i = 1, 2, , N) is 

N N 

(2.1) yn) aijn-) + h Ebi 
j=1 j=1 

To represent this equation more compactly, we make use of the vector space V(X) 
defined as the direct product of V and X. If V = VI (E V2 (E ... *( VN E V(X) where 
V1, V2, ... * * N E X, then we define jlvjj = maxl?i ?N juVjj1 . Given a linear operator 
A: V -*V, we define [A]: V(X) -V(X) by 

N N N 

[A](V1 (E V2 ED E VN) = aliv iD 3E a2ivi ED * * aNAV. 

j=1 ~ j=1 

We thus write (2.1) in the more compact form used in [10] 

(2.2) y(n) = [A] y(nll) + h[B]F( y(l)) 

where y (n) = n) 3 Ey fn) ?) . 3Ey~n) and the function F: V(X) -* V(X) is defined by 

F(v1 i V2 ED ED VN) =(V1) ED t(V2) ED * * (VN). 

Throughout this paper, we will assume that the method (A, B) is stable and con- 
sistent. That is, sup {jIAnIj: n= 1, 2, -} < o, As = s and At + Bs = + s 
where s C V is defined bys, = 1 (i = 1, 2, , N) and t is some member of V. 

3. Definitions of Order. In framing our definition, we are motivated by a number 
of considerations. In the first place, we might consider the obvious generalization of 
the definition of order for multistep methods. This would lead to the following 
definition. 

Definition 3.1. (A, B) is of MS-order q if there is t E V such that, for k = 
0 1,* .. *, q and i = 1, 2,. , Ng 

N N 

i at -(& 1)I + k b, , 

Note that this definition in the case q = 1 corresponds exactly to the definition of 
consistency. 

If we applied Definition 3.1 as it stands to Runge-Kutta methods expressed in 
the form (A, B), we would conclude that every explicit Runge-Kutta method has 
MS-order no greater than 1. This is because the first off-step approximation found 
in a Runge-Kutta step uses only the approximation at the beginning of the step and, 
in fact, computes this new value by an Euler step. Later stages may make use of this 
first-order approximation to construct other approximations at various off-step 
points,but the final value given at the end of the step is designed to allow the effects 
of the lower order errors to cancel out. Of course, only this final approximation is 
used by subsequent steps. These considerations lead to the following definition. 

Definition 3.2. (A, B) is of RK-type if there is I C { 1, 2, . , N} such that for 
all v C V and i C { 1, 2, . , N} it holds that (Av), = v,. In this case, we can reframe 
the method as an equivalent Runge-Kutta method and we define the RK-order as 
the order of that method. 
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This definition, besides being applicable only to a limited class of methods, suffers 
from the disadvantage that it is not symmetrical in the members of { 1, 2, . , N}. 
One way of combining features of these two definitions is to note that multistep 
methods in general require starting procedures. In the case of linear multistep methods, 
for example, Runge-Kutta methods are often used to supply the starting vectors 
y' 0), . , y.. . Furthermore, in the case of methods of RK-type, the internal computa- 
tions in step n could be regarded as being themselves computed from Runge-Kutta 
methods starting from y(n-l). 

Let r denote a Runge-Kutta method. For a fixed function f, we interpret r as a 
function on the real numbers which for stepsize h gives a mapping r(h): X -* X 
which takes z E X into the value computed using the Runge-Kutta method r from 
starting value z. If we have a collection of Runge-Kutta methods ri, r2, , rN, then 
we can construct a method which gives N results P1, r2, , rN given by 

N N 

(3.1) =, (h)(z) = ajjrj(h)(z) + h Abjf (P(h)(z))- 
1=1~ ~~~~~~ i=1 

Note that r1 P, .. N , rN are Runge-Kutta methods also, so that we can interpret a 
method (A, B) as a mapping on the class of N-tuples of Runge-Kutta methods to 
this same class. 

For given z E X, let Ph(z) denote the value of y(h) such that y satisfies y(O) = z, 
y'( ) = f(y( )) for all t in the open interval { : (h- ) > 0} and such that y is 
continuous on the closed interval { : t(h- t) > 0}. 

Definition 3.3. (A, B) is of order q relative to rl, r2, , r, if for allf with con- 
tinuous partial derivatives of order q in a neighbourhood of z, it holds that 

(3.2) IIP,(h)(z) - r,(h)(Ph(z))II = O(IhIQ+1) 

as Ih -*Ofor i = 1,2, , N. 
Definition 3.4. (A,B) is of order q if there exist Runge-Kutta methods 

ri, r2, .., rN such that (A, B) is of order q relative to ri, r2, ... , rN. 
To make practical use of this definition, we use algorithms consisting of three 

parts: (a) a starting procedure, (b) a continuing procedure, (c) a finishing procedure. 
Suppose the differential equation y'( ) = f(y( )) is given together with the value 
of y(x0). It is required to compute y(x,) where xv = x0 + vh. The three parts of the 
method are as follows: (a) we compute Y( ) by y?O) = r(h)(y(x0)) for i = 1, 2, , N, 
(b) we use the method (A, B) to compute in turn y(l), y(2), ,Y( , (c) we choose 
one of y('), y, ... , y ), say ye, and compute an approximation to y(xv) by the 
Runge-Kutta method (in general an implicit method) r such that r(h) = r,(h)- 1 (this 
inverse function exists for sufficiently small h) operating on y(,>. 

There are, of course, certain generalizations possible. For example, the finishing 
formula may be chosen in such a way that it not only reverses the effect of the per- 
turbation to the initial value introduced by the starting formula but also carries the 
solution forward for a further step or part of a step. It is also possible, in some cases, to 
find simple finishing formulae which make use of more than one of y(Y), yY), .. , (V) 

4. Rate of Convergence. We consider a sequence of approximations to y(x) 
given by the algorithm described in the previous section. That is, for v = v0, v0 + 1, 
... , we use a value h = (x - xo)/v and apply that procedure. We obtain an approxi- 
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mation for each such v and we are interested in the behaviour of the error in these 
approximations as h -* 0 (that is, as v x c). 

Denote by yIn) the value of y(n) computed with stepsize h = (x -xo)/i and 
write Y(n) = (n) y(n) ? ? (n)y . The initial values are given by y) = r,(h)(y(xo)) 
for i = 1, 2, , N and the final approximation is given by 9 r = (h)-1(yf)). 

THEOREM 4.1. If the method (A, B) is of order q relative to ri, r2, * , rN and if 
all partial derivatives off of order up to q are continuous and bounded in -an open set 
in X containing Y = - y(t) x0)(x- >) ? O}, there exist constants C, vo such 
that, for v i Po, 

1I - YWx)II-< CV-7. 

Proof Let H(n) = n) (n) q * . (n) (E V(X) be defined by 
n= r,(h)(y(xo + nh)) for i = 1, 2, , N. Also define Z = n) -y(n) and 

-(n) F(HvJn9J) - so that IIW"(n) < LIj Zfn)j . Our first task is to estimate 

(4)E ') = Z(n) [A]Z(n-1) h[B] Wfn) 
(4.1) 

V ==Z - - 

= H(n) [A]H(n-) h[B]F(H'n)). 

We write E'n) = en) en) e.. and we find that 
N N 

e., = rj(h)(y(xo + nh)) - E a jrj(h)(y(xo + (n - l)h)) - h E b&,jf(rj(h)(xo + nh)) 
1 =1 1 =1 

r 
N 

= Pi(h)(y(xo + (n - l)h))- E a-,rj(h)(y(xo + (n - l)h)) 

N 

- h N b jf(Pj(h)(y(xo + (n - I)h)))} 
j =1 

+ {ri(h)(y(xo + nh)) - Pi(h)(y(xo + (n - l)h)) 

N 

- h , bj(f(rj(h)(y(xo + nh))) - f(Fj(h)(y(xo + (n - )h)))) 
ji=1 

= r,(h)(Ph(y(XO + (n - l)h))) -r(h)(y(x, + (n - l)h)) 

N 

+ h E bij(f(Pj(h)(y(xo + (n - l)h))) - f(rj(h)(Ph(y(xo + (n - 
1 =1 

Because of the boundedness of the partial derivatives off at all points sufficiently 
close to the points in Y, we can, by requiring h to be sufficiently small, obtain a 
uniform bound C, jhjq+1 for the difference occurring in (3.2) for all z in Y and all 
i = 1, 2 , N. We therefore have, for some v, and all v _ vj, the following bound 

Ile (n)1 < C, |hlQ+1 (1 + -hI L |IBI|) < C2 lhlq+1 

where C2 = C1 (1 + L JIBJJ.x - xlJ/vl). Hence, IIE'n'II < C2 IhlK+1 for v > vi. 
From (4.1) and the fact that Z (0) = 0, we obtain the equation 

n n 
Z~n) = h , [An B] W2) + E [A ]E(). 

j = 1 1 = I 
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Let a, 3 be chosen so that IIAtII < a, IIAtBII ? < for all i = 0, 1, 2, . We see that 
jjZ(n)jI < E(n) where em = 0 and 

h= jl Ee() + nC2a jhjQ+ 
- 

Hence, 
>(n) _ (n-1) = h|Lg(n) +C(!g 

4, - E, = I hI LO~4 T LC2c Ih'Q+ 

If Lo = 0, this leads to the equation 

(4.2) 1 Iz4 11 < C3 Ijhz, 

where C3 = C2a Ix - xol for all v _ v2 = vi. Otherwise, we have 

(1 - 1h1I Lf3)(E(n) + IhjQ C2e/LfL) 
= (En(n-1) + chap C2a/L3). 

In this case, we choose v2 such that, if h = (x - x0)/v2, then Ihi Lo < 1 and such 
that v2 _ vi. We then find 

E, + hl' C2a/L3 = (1 - IhI Lo) (e0 + hlV C2a/L13) 

so that 

= ((1 - hi L3)' - 1) Ihl C2a/L3. 

In this case, we choose 

C3 (ep ( Ix-xILf3x) ) 

so that (4.2) holds in this case as well with v > v2. Having obtained this bound on 
IIHA - Yo'IIl, we must still estimate 

- y(x) = r1(h)1(yI) - r1(hf)(r1(h)(y(x))) 

= r1(hY)(y(I) -rj(h) (-q, ))- 

Let the Runge-Kutta method r,(h)-1 be one that computes s + 1 approximations 
z0, Z1, ... , Z. from an initial value z by the formula 

(4.3) zi = z + h E ci f(zj), i = 1, s 
i=O 

and gives a result r,(h)- 1(z) = z,. Since r,(h)-1 is, in general, implicit, we assume that 
Ihi L maxi =0 c I < 1 to guarantee existence and uniqueness of z0, zj, , z. This 
is achieved by requiring that v > V3, where Ix - xoI L maxi E8=0 |Cic j/V3 = k say, 
satisfies k < 1. We now define v0 as the greater of v2 and v3 and, from now on, we 
assume that v > vo. If 2 E X and 20, z1, , 2, are computed from 2 in the same way 
as z0, z1, -.. , z, are computed from z, we will now estimate r,(h)- 1(z) - r(h)-1(2). 
From (4.3) and the corresponding equation for 20, z1, 2, z, we have 

zi - i = z - 2 + h E cii(f(z,) -f2)) 
i=o 
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so that if maxi l lzi - 2il = r then r < lIz - 211 + k?. Hence 

llrI(h)1l(z) - ri(h)-Y(2)ll < (1 - k)-I iz - EJl 

so that if we write C4 = C/(1 - k), and substitute z = y(2 = ') and make use 
of the inequality I fly I ) _ v) I I < I I YJ<) -H, v) I I , then we find 

(4.4) jl9V - y(x)II ? C4 IhJ1. 

To obtain the result of the theorem, we write C = C4 Ix - x q and substitute h = 

(x - x0)/v in (4.4). Em 

5. Algebraic Criterion for Order. In this section, we make use of the terminology 
of [12]. The basic idea in that paper is that there is a group G whose elements may be 
represented by real-valued functions on the set T of (rooted) trees and such that every 
member of a certain class of method (which includes all Runge-Kutta methods) 
can be characterized by a member of the group. In particular, p is the group element 
associated with the exact increment function for a differential equation integrated 
through a unit step. If mi, m2 are two methods with group elements g1, g2, then the 
method formed by successive application of ml and m2 has corresponding group 
element glg2. If g is a group element and h is a real number, then g ') denotes the 
group element such that for any t E T with order r(t), g(h )(t) = hr Ct'g(t). If g corre- 
sponds to a method m then g (h corresponds to a method m' say, which is related 
to m in such a way that the increment function for m' applied to the differential equa- 
tion y' = f o y is identical to the increment function for m applied to the equation 
y' = hf o y. In particular, if h is an integer, then p (h) = ph (where the last exponent 
is the group-theoretic power). 

We now introduce some further terminology. 
Definition 5.1. The derivative g' of g C G is defined by the recurrence 

g'(T) = 1, 
g'(tu) = g'(t)g(u), t, u E T. 

From this point onward, we regard G as a linear space over the real field R. If g1, 
g2 C G, cl, c2 C R then clg1 + c2g2 is defined by 

(c1g1 + c2g2)(t) = C1g1(t) + c2g2(t) 

for all t C T. 
LEMMA 5.2. For a,3 , Y, 01, 02, * * , AnE G and c, c1, c2, . . . , cnC R the following 

relations hold: 

(5.1) a(cf) = cad + (1 - ac)a, 

(5.2) a(f + y) = ad + ay - a, 
n n n \ 

(5.3) a ciji = cicai + 1- ci )a, 
i~l i=1 t=1 

(5.4) c43' = a + (a)'. 
Proof. To prove (5.1), we make use of the function X introduced in [12]. We 

have, for t E T. 
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(a(c3))(t) = a(t) + X(a, t)(co) 

= a (t) + cX(a, t)G3) 

= c(ca(t) + X(a, t)(3)) + (1 - c)a(t) 

= c(ca)(t) + (1 - c)a(t). 

Similarly, to prove (5.2), 

aG3 + y)(t) = a(t) + X(a, t)(f + y) 

= a(t) + X(a, t)(3) + a(t) + X(a, t)(y) - a(t) 

= (af3)(t) + (ay)(t) - a(t). 

Making use of (5.1), we see that (5.3) holds with n = 1. We now use (5.1) and (5.2) 
to complete the proof of (5.3) by induction. We have, assuming the result holds with n 
replaced by n - 1, 

n n-1 \ n-1 

a Cii = a(i Cii + Cntn) = a 2 Cifi + a(Cn4n) -a 

n-1 / n1\ 

= Z ci(a/3i) +1 - ci) + Cn(aln) + (I - cn)a - a 

n n 

= E Cii + - ci a. 

Finally, we note that (5.4) is equivalent to 

(5.5) (ca3')(t) = a(t) + (aY)'(t) 

for all t C T and this will now be proved by recursion. For t = , the result is clear. 
We now assume (5.5) holds when t = u and when t = v and prove it when t = uv. 
Let X(a, u) = ZWGT C(W) W, X(a, v) = ZXGT d(x)xk where c, d map all but a finite set 
of trees to 0. Using results proved in [12], we find 

(aj3')(uv) = a(uv) + X(a, uv)(G') 

= a(uv) + (X(a, u)X(a, v))G') + a(v)X(a, u)(3') 

= a(uv) + F c(w)d(x)j'(wx) + a(v)X(a, u)(3') 
w ,xET 

= a(uv) + E c(w)d(x)03(w)3(x) + a(v)X(a, u)(3') 

= a(uv) + X(a, u)(j3)(a(v) + X(a, V)()) 

= a(uv) + ((a')(u) - a(u))(a3)(V) 

= a(uv) + (WY)'(u)(a3)(V) 

= a(uv) + (Cf)'(uv). 

This completes the proof of (5.5) and therefore of (5.4). [1 
Let the Runge-Kutta methods r1, r2, * *, rN have group elements gl, g2, ** ,N 

associated with them when h = 1. Thus, for a general stepsize h, the group elements 
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are g(h), glh), g., . We wish to study the group elements associated with F1, 
P2, , rP, given by (3.1). 

THEOREM 5.3. The group elements associated with Pi, 12, ... , rN are given by 
-(h) ( .) . . . 

(h) where g1 g2 9 

N N 

(5.6) i= aijg + bi jg, i = 1, 2, , N. 
i=1 l 

Proof. We first note that (5.6) does indeed define gi(t) for i = 1, 2, ... , N and 
all t C T, since in the equation 

N N 

(5.7) gi(t) = I aig,(t) + 2 b jg'(t), i = 1, 2, , N, 

g'(t) on the right-hand side can be written as the product g,(t1)g,(t2) . . g.(t8) say, 
where t1, t2, . .. , t, have lower orders than t. 

By absorbing h into the function f, we can, without loss of generality, restrict 
ourselves to the case h = I so that g(') = gi and g(') = gi for i = 1, 2, ..., N. 
Suppose the Runge-Kutta method ri (i = 1, 2, ... , N) is defined by (Si, ci, si) where 
Si is a (finite) set, ci is a linear operator on the space of real-valued functions on Si 
and si is a particular member of Si. The result computed by the method ri, starting 
from an initial value z C X, is y(si) where, for all s C Si, 

y(s) = z + (Ci X ( O y))(s). 

Suppose, without loss of generality, that Si, S2, * * , SN are disjoint and that none 
of them contain any of the numbers 1, 2, ... , N. Form a new set S = Si U S2U * ... 

U SN U { 1, 2, ... , N} and define a function y: S -* X satisfying 

(5.8) Y(S) = Z + (C X (1 Yo))(S) 

for all s C S, where c: B(S) B(S) is defined by c(x) I Si = c,(x I Si) for 
i = 19 29 N and 

N N 

c(x)(i) = 2 aiici(x I S,)(si) + , bijx(j), i = 1, 2, , N. 

Note that (5.8) defines y for all f with sufficiently small Lipschitz constant, and 
that y(si) = ri(l)(z), y(i) = P,(1)(z) for all i = 1, 2, ... , N. Let the functions ,u, v be 
defined for S and c as described in [12] and, for i = 1, 2, ... , N, let j4i , vi be the 
corresponding functions computed for Si, ci, so that for all t C T, 4i(t) = j(t) I Si 
and vi(t) = v(t) I Si. Also, for all t C T and all i = 1, 2, ... , N, v(t)(si) = gi(t)g 
v(t(i) = gi(t), and ju(tXi) = g'(t). We now use the relation v(t) = c(,u(t)) to compute, 
for i = 1, 2, .. N 

gM(t) = v(t)(i) = c(,(t)( 
N N N N 

= Y ai jcj(M(t) I Sj)(s,) + Z bijA(t)(j) = , aiicj(M(t))(si) + E biil(t)(j) 

N N N N 

= z a~ai v(t)(sj) + E biji(t)(j) = I aijgj(t) + E bijgj(t). 
j1c j56 j)l ?o=1 

Hence, (5.6) holds. El 
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We now use the result of Theorem 5.3 to express a condition for order. Let 
T. denote the set of trees with up to q nodes. 

THEOREM 5.4. The method (A, B) is of order q if there exist g1, g2, 9 NG, E G 
such that, for all t E: T., and i = 1,2, , N, 

N N 

(5.9) (pgi)(t) = 2 ajigi(t) + E bij(pgj)'(t). 
j=1 

Proof. Given Runge-Kutta methods rl, r2, * , rN, let g("), g2, * *, ) denote 
the group elements associated with r1(h), r2(h), ... , rN(h). By Theorem 5.3, the group 
elements associated with Pj(h), P2(h), ... , PN(h) are g1h) g2h) *-. g ) where g1, 

2,... , go are given by (5.6). However, the group element associated with the 
operation that takes z E X to ri(h)(Ph(Z)) isp(h)g(h) = (pgi)() . Hence, (5.9) will hold 
iff(pgi)(t) = ge(t) for i = 1, 2, * , N and all t C T.,. This holds iff, for each 
i = 1, 2, ... , N, the Runge-Kutta method which, for stepsize h, takes z C X to 
(ri(h)-l o Pj(h))(z) is of order q. This is equivalent to (3.2). El 

COROLLARY 5.5. The method (A, B) is of order q if there exist g1, g2, . . ., C E G 
such that, for all t C T,, and i = 1, 2, * * Ng 

N N 

(5.10) gi(t) = E aii(p-1gi)(t) + E b jgj(t). 
j51 j=1 

Proof. This result follows directly from Theorem 5.4 by substituting p- gi for 
gi (i = 1, 2, ... , N). However, we will give an alternative proof based on the group- 
theoretic interpretations of (5.9) and (5.10). Let G., denote the normal subgroup of G 
such that, if g C G, and t C T., then g(t) = 0. We will prove that 

N N \N N \ 

(5.11) gTp (E ajig, + bij(p ) = aii(plgi) + E biigt) 
j l g)l 9il iigl 

which will establish the result since (5.9) is equivalent to the statement that the left- 
hand side of (5.1 1) is in G., and (5.10) is equivalent to the statement that the right-hand 
side of (5.11) is in G.,. We have, using Lemma 5.2 and the consistency of (A, B), 

N N 

9- lP- 1 Eaji gi + Ebi i(pgi)' 

N N ( N N 

= -i1 aii(p-gi) + E biip-1(pgi)' + I - aii - E biiP- 

N N 

= gi aij(pjlgi) + Z biigt) El 

In the next corollary, which we state without proof, we consider a method (A, B, C) 
in which (2.2) is replaced by 

y~n) = [A] y(in1) + h[B]F( y(n)) + h[C]F( y(-l)). 

COROLLARY 5.6. The method (A, B, C) is of order q iff there exist gi, g2, ... * *N 

G such that, for all t C T. and i = 1, 2, * * Ng 
N N N 

(pgi)(t) = E ajig,(t) + E bi(pgj)'(t) + E cjjg'(t). 
j~1 j~1 i=1 
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TABLE 6.1 

t T TT TT.T T.TT (TTT)T 

g'(t) I 0 0 1(b +b -1) 0 
1 1 2 42 43 0 0 

g2(t) 1 I I O O 

23(t 2 8 b2 3 

g4(t) 1 1 14b I 
2 V 32 ~ ~ ~~~~~~~~~~~~8 _W 32 

gl(t) O 1((4b+4-1) +3b 4-142b43) 84243 2b42432 44332 

g21(t ) 1 I~b13-V3 O O 4 (b4 + 4 -1) O O 

g3(t) 1 2b32 14432 T24 3243 04243) 42 O 

g4(t) 1 1(442 43) 4(42 b43) -7(1-b42-143)7+143b32 8b42 b43) 4 b42432 

g(t) -1 ? 1 -~ ~+1b +1 b bJ 1233+--b + 

g5(t) 12 1 422533264243 12 42 43 

p(t) 1 1 1 1( b 1 1+ 1 
2 b3 64 

. 
. ,( .b . ~ .b . -1(- _ _2I _ i 1( 

_ -l b 

6. An Example. By contrast with the classical Runge-Kutta method (A, B) 
where 

0 0 0 0 1 0 00 0 0] 

0 0 0 0 1 -00 0 O 

(6.1) A= 0 0 0 0 1 B= 0 0 

0 0 0 0 1 O 0 1 0 0 

00001 iii~~~~~~~~~~~~~~~ oj _0 0 0 0 L_ 1 3 6 ? 

we consider a method (A, B) where 

0 0 0 1 00 O O O O 

0 0 0 0 1 1 0 00 0 

(6.2) A= 0 0 0 0 1, B= -b32 b32 0 0 0 

0000O O 1 2 b42-b43 b42 b43 0 0 

1 20 
_0 0 0 0 1 6 3 -b53 b53 6 0 

and b32, b42, b43, b53 are to be chosen. The advantage the method (6.2) would have over 
(6.1) is that it requires three rather than four derivative calculations per step. This 
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TABLE 6.1 (continued) 

T(TT.T) T(T.TT) 

.,( b 
11 _ _l~ 

-b ) 
-, 

-b 

-3(b 42+b 43) 7 43 32 (b42+b43 4243 

3 i 42 4334 242 43 

-lb Lb )b 1 
4 32 1 (1b32) (b42+b43-) 

1(b +b ~~~~~-(10-b -b )2+lIb b 
4( 42 b43)-12 42 43 2 43 32 

-12 - U (b +b 42Z b+b432 -_b b b b (1-b -b )+ 5~-!(b +b )-'1(b +b )2(1-b -b) 
12 12 42 43 4( 42 43 443 32 43 32(2 42 43 24 3 42 43 2 42 43 ( 42 43 

1-3(b +b 
-L+-lb~1 b +-1(b +b ) 1b 

3 --342+ 43) 12 4 43 32 44243 (1-b42-b43) 

-b 
32)(30-(b42 +b)) (1-b 

32)(-+b43b32 )+(l-b 42-b 43)((b 42+b43 )-b 32(L(b42 +b4))) 2 32 i 42422 6243 2 43424 34~ 24 

31 42 43)4 (b +b3)2+b3b32 (1-b -b )(-1+1(b +b )-1(b +b ) 2+bb) 3 2- 42(b 3+b 42 43 4 4b3 42- 43 6 42 43 2 42 43 43 32 

-5(b 3 32 *8 12 42 43b 6 42 43 6 43 32 253 32(1 b42b43) 

1 . ,,,.1 

is because f(ytn)) is identical to f(yJ(?ll)) and need not be recomputed and because 
f(y 5') is not made use of and therefore need not be computed at all. 

What we shall do is to choose b,2, b42, b43, b53, so that the method (6.2) is of order 4 
relative to r,, r2, r3, r4, r5 where r5 is the trivial Runge-Kutta method defined by 
r5(h)(z) = z. This will mean that the method will not require any special finishing 
procedure. Let p'-gi, p'- 9g2, p- 1g3, p_ 1g4, p- 1g5 (where g5 = p) denote the group 
elements corresponding to r,(l), r2(1), r3(1), r4(1), r5(1) so that the conditions for the 
method to be of order 4 are that, for t C T4 

(6.3) g1(t) = (P-1g4)(t) 

(6.4) g2(t) = '2 91 (* 

(6.5) g3(t) = (Q - b32)g(t) + b32g9(t), 

(6.6) g4(t) = (1 - b42- b43)g(t) + b42g2(t) + b43g3(t), 

(6.7) p(t) = g5(t) = Ig'(t) + (2 - b53)g2(t) + b53g3(t) + 6g4(t). 

To write these as polynomial conditions on b32, b42, b43, b53, we substitute in turn 
t = rTT, TT * T, T r TT, (7r7 *r)r, r'* TTi, T(TT T ), T(T 

- 
TT) into (6.3)-{6.7). From (6.4), 

(6.5), (6.6), we find, for each t, the values of g2(t), g3(t), g4(t); from (6.3), we find the 
value of g,(t); and, from (6.7), we obtain a condition on b32, . .. , b53. Because of the 
form chosen for B, the equations for t = -r, TT, TTf*.T, (T-. T)T will be automatically 
satisfied. However, for completeness, the computations are shown for all the 8 
members of T4 in Table 6.1. 
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Equating g5(t) with p(t) in the cases t = r* rr, r'r rr, r(-rr r) and r(,r rr), we 
obtain the following conditions 

(6.8) 6(b42 + b43) - 
T2_1 

+ 2b53b32 = 

(6.9) 1 (b42 + b43) + 4b53b32 = 

1 
(6.10) 9 - (b42 + b43) + lb53b32 = 2 

(6.11) -f + 
5 

(b42 + b43) - 6(b42 + b43) 

+ 6b43b32 + 2b53b32 (1 -b42- b43) = 24. 

Equations (6.8), (6.9), (6.10) are satisfied if and only if 

(6.12) b42 + b43 = 11/12, 

(6.13) b53b32 = 7/36, 

and, with these values, (6.11) simplifies to 

(6.14) b43b32 = 5/12. 

The general solution to (6.12), (6.13), (6.14) is 

b32 = 0, b42 = 11/12 - 5/120, b43 = 5/120, b53 = 7/360 

where 0 is any nonzero number. There do not seem to be compelling reasons for 
choosing any particular value for 0; an analysis of the region of absolute stability, 
for example, shows this to be independent of 0. Hence, we select 0 = on grounds 
of simplicity. The method (6.2) becomes in this case 

0 0 0 1 0 0 0 0 0 0 

O 0 0 0 1 B 1 0 0 0 0 

A = 0 0 O O 1 , B 1 12 ? 0 0 
o 0 0 0 1 6 0 

Lo o o oi 1_5 1 0 - 

To use this method in practice, we could find Runge-Kutta methods ri, r2, r3, r4 
which satisfy the requirements that ri(l) has group element lying in p- 'giG4 and use 
these methods to compute starting values for YO') (i = 1, 2, 3, 4). However, since 
only hf(Y401) and Y.") are used in subsequent steps, rl, r2, r3 can be omitted from con- 
sideration and Y4?O need be computed only to third-order accuracy. The starting 
procedure that will now be suggested takes the result forward one step (so that we 
may think of y4l), Y."' as being the starting values computed) by the classical fourth- 
order method (6.1) and then computes Y41) by using an increment function that 
requires no further derivative calculations. If Y1, Y2, Y3, Y4, Y5 are the approximations 
computed using (6.1) with Y1 equal to a given initial value y(x0), we compute y4l), Y51) 
as follows 

Y2 = Y1 + 2hf(Yl), 

Y3 = Y1 + 2hf(Y2), 
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Y4 = Y1 + hf(Y3), 

Y5l = Y5 = Y1 + 6h(f(Y1) + 2f(Y2) + 2f(Y3) + f(Y4)), 

Y4 = Y1 + h(c1f( Y1) + C2f( Y2) + C3(( Y3) + C4f( Y4)), 

where c1, C2, C3, C4 are real numbers. If g(h) is the group element associated with 
y4l) computed this way, we find 

g(r) = C1 + C2 + C3 + C4, 

g(rr) = 2(C2 + C3) + C4, 

g(rr r) = 4(C2 + C3) + C4, 

g(r7Tr) = -4C3 + 2C4, 

so that, equating these to the appropriate g4(t) given in Table 6.1, we obtain the values 

c, = 1/1 2, C2 = 7/72, C3 = 59/72, C4 0 0. 

Although this new method is put forward to illustrate the definition of order 
rather than as a practical alternative to existing methods, it does seem appropriate 
to see how well it performs in at least one example. Accordingly, the four-dimensional 
system of equations y'(t) = yj+l(O (i = 1, 3), y'(t) = -Yi-_(t)/(Yg) +Y3( )2/ 

(i = 2, 4) with y(O) = (1, 0, 0, 1) was integrated through iv steps with stepsize h = x/2v 
and with = 10, 20, 40, 80 using the classical fourth-order Runge-Kutta method and 
the method derived in this section. At each value of v, for each method, the value of 
v4(y(7r/2) - 9 ,) was printed out. For each method, this vector was almost independent 
of v and had the values 

Runge-Kutta: (.03, .10, .10, .13), New Method: (.22, .04, .05, .27). 

Thus, the fourth-order error behaviour for the new method is experimentally 
confirmed in this example. Although a comparison of these error vectors favours the 
Runge-Kutta method, a comparison based on numbers of derivative calculations 
(rather than numbers of steps) would favour the new method. 
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